Qualitatively Incorrect Features in the TDDFT Spectrum of Thiophene-Based Compounds

نویسندگان

  • Antonio Prlj
  • Basile F. E. Curchod
  • Alberto Fabrizio
  • Leonard Floryan
  • Clémence Corminboeuf
چکیده

Ab initio molecular electronic structure computations of thiophene-based compounds constitute an active field of research prompted by the growing interest in low-cost materials for organic electronic devices. In particular, the modeling of electronically excited states and other time-dependent phenomena has moved toward the description of more realistic albeit challenging systems. We demonstrate that due to its underlying approximations, time-dependent density functional theory predicts results that are qualitatively incorrect for thiophene and thienoacenes, although not for oligothiophene chains. The failure includes spurious state inversion and excitation characters, wrong distribution of oscillator strengths and erroneous potential energy surfaces. We briefly analyze possible origins of this behavior and identify alternative methods that alleviate these problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigations of New Low Gap Conjugated Compounds Based on Thiophene-Phenylene as Solar Cells Materials

The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The co...

متن کامل

Theoretical Study on Structure and Electronic Properties of Aniline-5-Membered Heterocyclic Co-oligomers

With the aim of exploring the electronic and optical properties of some interesting conductive copolymers in view of potential applications, a regular oligomer systems made of aniline and three reference heterocyclic compounds (pyrrole, thiophene and furan) are studied using density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations at B3LYP/6-31+G(d,p) le...

متن کامل

The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules

The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...

متن کامل

Quantum Chemical Investigation of the Photovoltaic Properties of Conjugated Molecules Based Oligothiophene and Carbazole

The research in the organic π-conjugated molecules and polymers based on thiophenehas become one of the most interesting topics in the field of chemistry physics and materials science. These compounds have become the most promising materials for the optoelectronic device technology.. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing ...

متن کامل

Theoretical simulation of the spectroscopy and dynamics of a red copper protein.

The electronic absorption, circular dichroism and X-ray absorption spectroscopy of the red copper protein nitrosocyanin is simulated with classical molecular dynamics simulations in conjunction with time-dependent density functional theory (TDDFT) and multireference configuration interaction (MRCI) calculations on the active site, with the remainder of the protein and solvent included via point...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015